Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants.

نویسندگان

  • Suyeon Kim
  • Michiko Takahashi
  • Kyoko Higuchi
  • Kyoko Tsunoda
  • Hiromi Nakanishi
  • Etsuro Yoshimura
  • Satoshi Mori
  • Naoko K Nishizawa
چکیده

Nicotianamine, a plant-derived chelator of metals, is produced by the trimerization of S-adenosylmethionine catalyzed by nicotianamine synthase. We established transgenic Arabidopsis and tobacco plants that constitutively overexpress the barley nicotianamine synthase gene. Nicotianamine synthase overexpression resulted in increased biosynthesis of nicotianamine in transgenic plants, which conferred enhanced tolerance of high levels of metals, particularly nickel, to plants. Promoter activities of four nicotianamine synthase genes in Arabidopsis were all increased in response to excess nickel, suggesting that nicotianamine plays an important role in the detoxification of nickel in plants. Furthermore, transgenic tobacco plants with a high level of nicotianamine grew well in a nickel-enriched serpentine soil without developing any symptoms of nickel toxicity. Our results indicate that nicotianamine plays a critical role in metal detoxification, and this can be a powerful tool for use in phytoremediation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Copper and Zinc on Growth, Metal Accumulation and Chemical Composition of Essential Oils in Sweet Basil (Ocimum basilicum L.)

Background: Biosynthesis and metabolism of phytochemicals in medicinal and aromatic plants are vigorously affected by different abiotic elicitors including chemicals. Objective: This experiment was designed to investigate the effects of three levels of copper sulfate (Cu: 0, 5, 25 mg kg-1) and zinc sulfate (Zn: 0, 10, 50 mg kg-1) and their combinations on yield, chemical compositions of esse...

متن کامل

Increased sensitivity to iron deficiency in Arabidopsis thaliana overaccumulating nicotianamine

Nicotianamine (NA) is a non-protein amino acid derivative synthesized from S-adenosyl L-methionine able to bind several metal ions such as iron, copper, manganese, zinc, or nickel. In plants, NA appears to be involved in iron availability and is essential for the plant to complete its biological cycle. In graminaceous plants, NA is also the precursor in the biosynthesis of phytosiderophores. Ar...

متن کامل

Performance of purslane (Portulaca oleracea) in nickel and cadmium contaminated soil as a heavy metals-removing crop

Specific plants can remove heavy metals from the soil and contribute to pollution remediation in cropping systems. Determining the level of highest heavy metals that a super-accumulator crop can withstand without reducing its yield is important for management. The objective of this study was to investigate the heavy metal-removing capacity of purslane by studying different stress criteria and b...

متن کامل

Heavy Metals Need Assistance: The Contribution of Nicotianamine to Metal Circulation Throughout the Plant and the Arabidopsis NAS Gene Family

Understanding the regulated inter- and intra-cellular metal circulation is one of the challenges in the field of metal homeostasis. Inside organisms metal ions are bound to organic ligands to prevent their uncontrolled reactivity and to increase their solubility. Nicotianamine (NA) is one of the important ligands. This non-proteinogenic amino acid is synthesized by nicotianamine synthase (NAS)....

متن کامل

Phytoremediation capability of nickel and manganese polluted soil by Sorghum biocilor L.

A pot experiment was conducted based on a factorial study and complete random block design with three replicates to investigate the phytoremediation potential of Sorghum biocilor L. in soils polluted with nickel and manganese during 2017-2018. The first factor was nickel nitrate (0, 60, and 120 mg kg-1 soil) and the second factor comprised of manganese sulphate (0, 50, and 100 µM). The characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant & cell physiology

دوره 46 11  شماره 

صفحات  -

تاریخ انتشار 2005